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Spacecraft trajectory overview

Spacecraft today essentially all travel by being given an impulse that places them on a trajectory in which they coast from one point to another, perhaps with other impulses or gravity assists along the way. The gravity fields of the Sun and planets govern such trajectories. Rockets launched through atmospheres face additional complications, such as air friction and winds. Most of the present discussion treats this type of trajectory. 

Advanced propulsion systems and efficient travel throughout the Solar System will be required for human exploration, settlement, and accessing space resources. Rather than coasting, advanced systems will thrust for most of a trip, with higher exhaust velocities but lower thrust levels. These more complicated trajectories require advanced techniques for finding optimum solutions, but a reasonably good approximate method will be given here. 

Newton's laws of motion

The fundamental laws of mechanical motion were first formulated by Sir Isaac Newton (1643-1727), and were published in his Philosophia Naturalis Principia Mathematica. They are:

Sir Isaac Newton 

1. Every body continues in its state of rest or of uniform motion in a straight line except insofar as it is compelled to change that state by an external impressed force. 

2. The rate of change of momentum of the body is proportional to the impressed force and takes place in the direction in which the force acts. 

3. To every action there is an equal and opposite reaction. 

More compactly, dp / dt = F 




Calculus, invented independently by Newton and Gottfried Leibniz (1646-1716), plus Newton's laws of motion are the mathematical tools needed to understand rocket motion. 

Newton's law of gravitation

To calculate the trajectories for planets, satellites, and space probes, the additional relation required is Newton's law of gravitation: 

Every particle of matter attracts every other particle of matter with a force directly proportional to the product of the masses and inversely proportional to the square of the distance between them. Symbolically, the force is 

F = -G m1 m2 er / r2, 

where G=6.67 x 10-11 m3 s-2 kg-1, m1 and m2 are the interacting masses, r is the distance between them, and er is a unit vector pointing between them. 

Kepler's laws of planetary motion

The discovery of the laws of planetary motion owed a great deal to Tycho Brahe's (1546-1601) observations, from which Johannes Kepler [Note: Web link in German] (1571-1630) concluded that the planets move in elliptical orbits around the Sun. First, however, Kepler spent many years trying to fit the orbits of the five then-known planets into a framework based on the five regular platonic solids. The laws are: 

1. The planets move in ellipses with the sun at one focus. 

2. Areas swept out by the radius vector from the sun to a planet in equal times are equal. 

3. The square of the period of revolution is proportional to the cube of the semimajor axis. That is, T2 = const x a3 

Conic sections

In a central-force gravitational potential, small bodies will follow conic sections. The equation for a conic section with the origin at one focus appears at top right, where e is eccentricity and a0 is the semi-major axis. 

[image: image5.png]= o/ (1 +ecosB)




[image: image6.png]1= g/ (1— %)




Special cases for conic sections are shown at right. E is the (constant) energy of a body on its trajectory. 
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Conic section examples 
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Some important equations of orbital dynamics

Circular velocity 
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Escape velocity 
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Energy of a vehicle following a conic section, where a is the semi-major axis 
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Clicking on the conic-section trajectory formulary at right will show the main equations needed to define the position of a body at a given time. See text by Roy for definitions. 




Lagrange points

The Lagrange (sometimes called Libration) points are positions of equilibrium for a body in a two-body system. The points L1, L2, and L3 lie on a straight line throught the other two bodies and are points of unstable equilibrium. That is, a small perturbation will cause the third body to drift away. The L4 and L5 points are at the third vertex of an equilateral triangle formed with the other two bodies; they are points of stable equilibrium. The approximate positions for the Earth-Moon or Sun-Earth Lagrange points are shown below. 
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Rocket equation

Conservation of momentum leads to the so-called rocket equation, which trades off exhaust velocity with payload fraction. Based on the assumption of short impulses with coast phases between them, it applies to chemical and nuclear-thermal rockets. First derived by Konstantin Tsiolkowsky in 1895 for straight-line rocket motion with constant exhaust velocity, it is also valid for elliptical trajectories with only initial and final impulses. Conservation of momentum for the rocket and its exhaust leads to 
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The rocket equation shows why high exhaust velocity has historically been a driving force for rocket design: payload fractions depend strongly upon the exhaust velocity, as shown at right. 
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Hohmann minimum-energy trajectory

The minimum-energy transfer between circular orbits is an elliptical trajectory called the Hohmann trajectory. It is shown on the right for the Earth-Mars case, where the minimum total delta-v expended is 5.6 km/s. The values of the energy per unit mass on the circular orbit and Hohmann trajectory are shown, along with the velocities at perihelion (closest to Sun) and aphelion (farthest from Sun) on the Hohmann trajectory and the circular velocity in Earth or Mars orbit. The differences between these velocities are the required delta-v values in the rocket equation. 




Gravity assist

Gravity assists enable or facilitate many missions. A spacecraft arrives within the sphere of influence of a body with a so-called hyperbolic excess velocity equal to the vector sum of its incoming velocity and the planet's velocity. In the planet's frame of reference, the direction of the spacecraft's velocity changes, but not its magnitude. In the spacecraft's frame of reference, the net result of this trade-off of momentum is a small change in the planet's velocity and a very large delta-v for the spacecraft. Starting from an Earth-Jupiter Hohmann trajectory and performing a Jupiter flyby at one Jovian radius, as shown at right, the hyperbolic excess velocityvh is approximately 5.6 km/s and the angular change in direction is about 160o. 
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Galileo: a gravity-assist example
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High-exhaust-velocity, low-thrust trajectories

The simplest high-exhaust-velocity analysis splits rocket masses into three categories:

1. Power plant and thruster system mass, Mw. 

2. Payload mass, Ml. (Note that this includes all structure and other rocket mass that would be treated separately in a more sophisticated definition.) 

3. Propellant mass, Mp. 

Useful definitions and relations

Mission power-on time 

tau 

Total mass 

M0=Mw+Ml+Mp 

Empty mass 

Me=Mw+Ml 

Specific power [kW/kg] 
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Propellant flow rate 
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Thrust power 
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Thrust 
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High-exhaust-velocity rocket equation

Assume constant exhaust velocity, vex, which greatly simplifies the analysis. The empty (final) mass in the Tsiolkovsky rocket equation now becomes Mw+Ml, so 
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where u measures the energy expended in a manner analogous to delta-v. After some messy but straightforward algebra, we get the high-exhaust-velocity rocket equation: 
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Note that a chemical rocket effectively has Mw=0 ==> alpha=infinity, and the Tsiolkovsky equation ensues. The quantity alpha*tau is the energy produced by the power and thrust system during a mission with power-on time tau divided by the mass of the propulsion system. It is called the specific energy of the power and thrust system. Relating the specific energy to a velocity through E=mv2/2 gives the definition of a very important quantity, the characteristic velocity: [image: image25.png]vy = (207) 2



. The payload fraction for a high-exhaust-velocity rocket becomes 
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,
which is plotted below. 
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Analyzing a trajectory using the characteristic velocity method requires an initial guess for tau plus some iterations. The minimum energy expended will always be more than the Hohmann-trajectory energy. The payload capacity of a fixed-velocity rocket vanishes at u=0.81 vch, where vex=0.5 vch. Substituting these values into the rocket equation gives 
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Example: 9 month Earth-Mars trajectory
(alpha=0.1 kW/kg, alpha tau=2x109 J/kg.) NB: When the distance travelled is factored into the analysis, only u>10 values turn out to be realistic. 
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Trade-off between payload fraction and trip time for selected missions.
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Variable exhaust velocity and gravity

Variable exhaust velocity and gravity considerably complicate the problem. When the exhaust velocity is varied during the flight, variational principles are needed to calculate the optimum v(t). The key result is that it is necessary to minimize [image: image32.png]f o
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. Even the simplest problem with gravity, the central-force problem, is difficult and requires advanced techniques, such as Lagrangian dynamics and Lagrange multipliers. In general, trajectories must be found numerically, and finding the optimum in complex situations is an art. 

Examples of high-exhaust-velocity trajectories

[ Still looking for examples of these on the Web. ] 



Useful references

Astrodynamics

· Archie E. Roy, The Foundations of Astrodynamics (Adam Hilger, Bristol, 1988). 

· Richard H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics (AIAA, New York, 1987). 

Low-thrust trajectory analysis

· Ernst Stuhlinger, Ion Propulsion for Space Flight (McGraw-Hill, New York, 1964). 

· Krafft A. Ehricke, Space Flight: II. Dynamics (Van Nostrand, Princeton, 1962). 

University of Wisconsin Courses

· EMA 550/Astron 550, Astrodynamics, is frequently taught during the Fall semester, and covers many of the topics discussed on this page plus celestial coordinate systems. 

· EMA 601, Plasma Propulsion, was taught in Spring, 1993 and may be taught again in Spring, 1997. Half of the course covers low-thrust trajectories and the other half treats plasma and electric thrusters (subject of lecture 30 in this course). 

Worldwide Web

Space-related, government, and other potentially useful Web sites 

· Bookmarks 



Questions

1. What is the travel time from Earth to Saturn on a Hohmann trajectory? 

2. If a spacecraft is on an escape trajectory, what conic section does it follow? 

3. A satellite is in a circular, geosynchronous orbit around the Earth (mass = 6 x 1024 kg). Assume that the terrestrial day is exactly 24 h and neglect the satellite's mass. Calculate the satellite's 

1. Geocentric radius (km) 

2. Velocity (m/s) 

4. Why do some rockets have more than one stage? Explain using Tsiolkovsky's rocket equation. 

5. Explain how high-exhaust-velocity, separately powered systems, even with their low thrust levels, can facilitate development of the Solar System. 
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Space Engineering - Formulas
Back to the Space Engineering main page 

Below you can find formulas concerning Space Engineering. Know them by heart. 

Heat balance

To get heat balance, the total energy that the satellite or space ship absorbs, must be equal to the total energy that it transmits. Assuming that one side of the ship or satellite is towards the sun, and the other side, which is perfectly isolated, is towards cold space, the following formula applies: (alpha)AS = (epsilon)Aq(T4 - Tsp4)
alpha = solar absorptance (fraction of solar radiation absorbed; metal 0.1, black paint 0.9, white paint 0.4)
S = Solar Flux (usually 1400 W/m2 around the earth, and S ~ 1/r2 (r is distance to sun))
A = Area
epsilon = (infra-red) emissivity (fraction of black body radiation emitted; metal 0.04, black or white paint 0.9, glass 0.9)
q = Stefan-Boltzmann constant (56.7051 * 10-9 W / (m2K4))
T = Satellite surface temperature in Kelvin
Tsp = Temperature of cold space
This is an important formula, and you can expect an exam question about it, so remember it. 

Deriving Tsiolkowsky's formula of rocketry:

M*dV / dt = -w*dM / dt
M = Mass of rocket
dV = Change of velocity
w = Exhaust speed relative to the rocket
So in fact this formula says:
Thrust = Exhaust velocity * mass flow 

The last formula can be rearranged as follows:
dV = -w*dM / M 

Assuming zero gravity and vacuum, we can derive from this the following formula, which is very important and well known. It's called Tsiolkowsky's formula of rocketry, named after The Russian Tsiolkowsky, who derived it in 1903.
(delta)Ve = w*ln(M0 / Me)
(delta)Ve = Velocity change
M0 = Start mass
Me = End mass
The usual value for w in a launcher rocket is about 3000 m/s. The usual value for M0 / Me is about 5-6. Make sure you remember this formula. 

If we also incorporate the presence of a gravity field and air drag, the formula gets a bit more complicated. So we neglect drag, and assume just a homogeneous gravitational field. Then we get the following formula:
(delta)Ve = w*ln(M0 / Me) - g0*tb
g0 = Gravity at ground level
tb = Burning time of the rocket. 

Coasting

When coasting, the following formulas apply:
Coasting time:
tc = Ve / g0
Vertical distance covered:
hc = tc*Ve - (1/2)*g0*tc2 = (1/2)*Ve2 / g0 

Aerodynamic Disturbance Forces

The aerodynamic disturbance force on an aircraft, also known as the aerodynamic drag, is small, but still occasionally vital in, especially low, earth orbits. It can be calculated as follows:
D = (1/2)CDA(ro)V2cos(i)
D = Aerodynamic drag
CD = Drag coefficient (Usually below 0.2)
A = Surface area on one side of the satellite
V = The speed (relative to air) with which the satellite is travelling
i = The angle between te direction of movement, and the line perpendicular to the plain of the surface area
If you have already taken A as the frontal area of the satellite, then i = 0, which means that cos(i) is simply one, thus it can be ignored. 

Solar Radiation Disturbance Forces

The formula of the solar radiation disturbance force is not given in the space engineering book, and therefore needs not to be known. However, the solar radiation force is proportional to the following parameters:
A = The surface area
S = The solar flux (in W/m2)
2 - (alpha), where alpha is the solar absorptance. The two is there, because solar radiation that hits the space ship, often gets "bounced" back with equal speed in the opposite direction (remember that the momentum of the total situation stays the same, so the total impulse is 0). However, because of this, the radiation that gets absorbed, only counts once.
cos(i), where i is the angle between the sun vector and the surface normal. If you have taken A as the frontal area already, cos(i) is simply 1, just like with the aerodynamic drag formula. 

The Rest?

Of course there are a lot of other calculations that can be made in space engineering. There are far too many calculations for me to be able to mention all of them. But as long as you use your mind, think in a logical way and know a couple of geometric equations, you'll be alright. 

