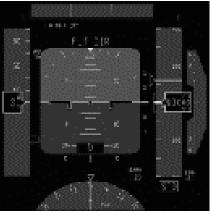
Early End of Life Failures of Electronics in Avionic Systems

Joseph B. Bernstein

Associate Professor of Reliabilty

Sponsored by:


Aerospace Vehicle Systems Institute - AVSI

Texas Engineering Experiment Station

Texas A&M University

May 2001

- Sponsored by a consortium of Aerospace companies
 - Future avionics systems will be designed, built, operated and maintained using standard, commercially available, electronic components
 - The electronics industry trends are moving counter to aerospace industry needs
 - The aerospace industry can no longer assume that the life of a Line Replaceable Unit (LRU) will be greater then 5-10 years.

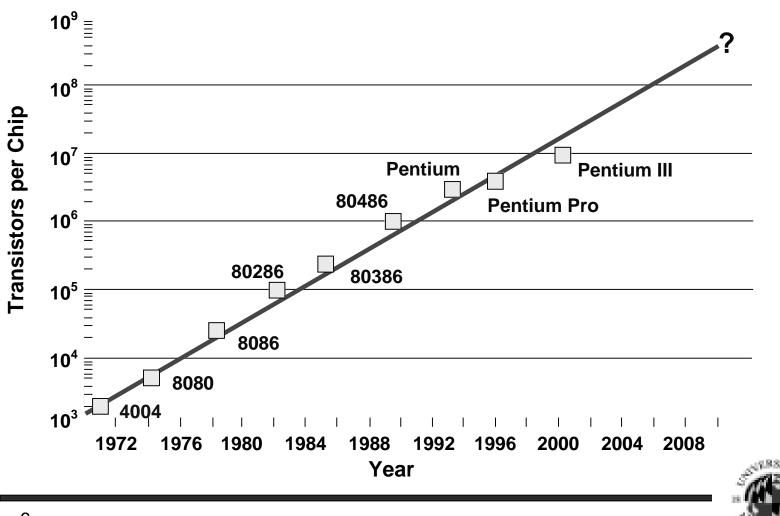


Methods to Account for Accelerated Semiconductor Device Wearout

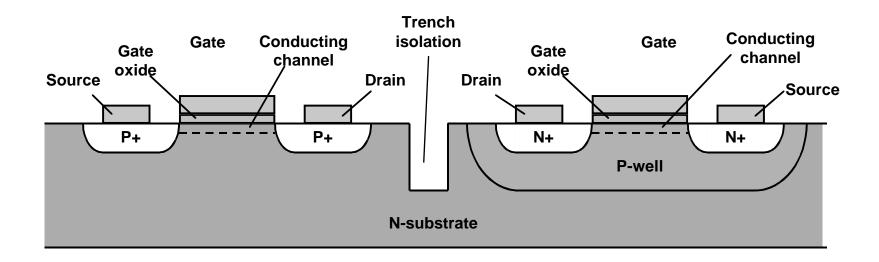
AVSI Project #17

College Park, MD

425-266-5975



Iloyd.w.condra@boeing.com

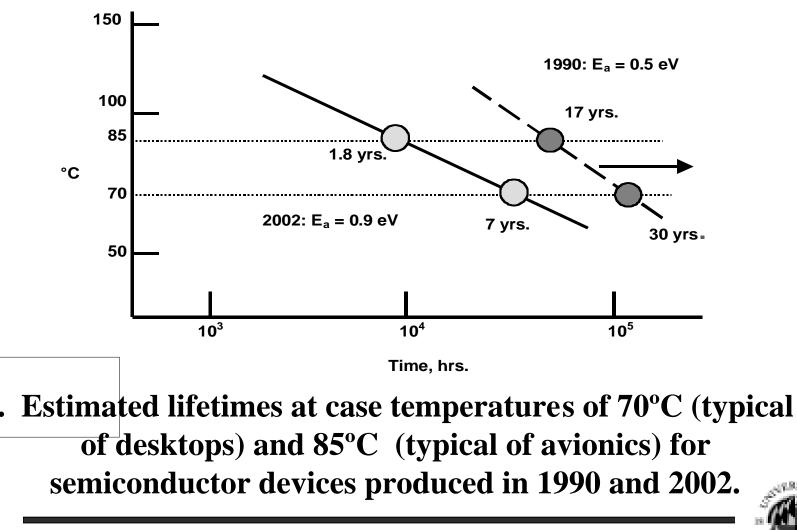

- Future avionics systems must be designed, produced, operated, maintained, and supported using commercially-available electronic components
- The electronic component industry is moving counter to aerospace interests
- We cannot assume that the design, production, or service life of an individual LRU will be greater than 5-10 years

6

CMOS Gates

7

Technical Trends


	<u>1990</u>	2002	<u>2005</u>	2014
Million transistors per chip	1	100	190	4,308
Local clock frequency, MHz	z 33	2,100	3,500	13,500
MPU Gate length, nm	600	90	65	22
Gate oxide thickness, nm	12	2.2	1.3	0.6

More Technical Trends <u>1990</u> <u>2000</u> <u>2010</u> **Operating temperature, °C** -55 to 125 -40 to +85 0 to 70 Supply voltage 5v 1.5v **0.6**v Max. power (high perf.) 5 100 170 ?? No. of package types <10 <60 **Design support life** >10 yrs. 1-5 yrs. <1yr. **Production life** >10 yrs. 3-5 yrs. <3yrs. Service life 5-10 yrs. <5yrs >20 yrs.

Device Wearout Trend

Semiconductor Device Wearout

- Device manufacturers face relentless pressure to improve functionality and reduce costs
- Their major customers are willing to accept shorter device lifetimes in order get lower prices and improved functionality
- Aerospace customers must use the same products as the major device customers

Device Wearout Life

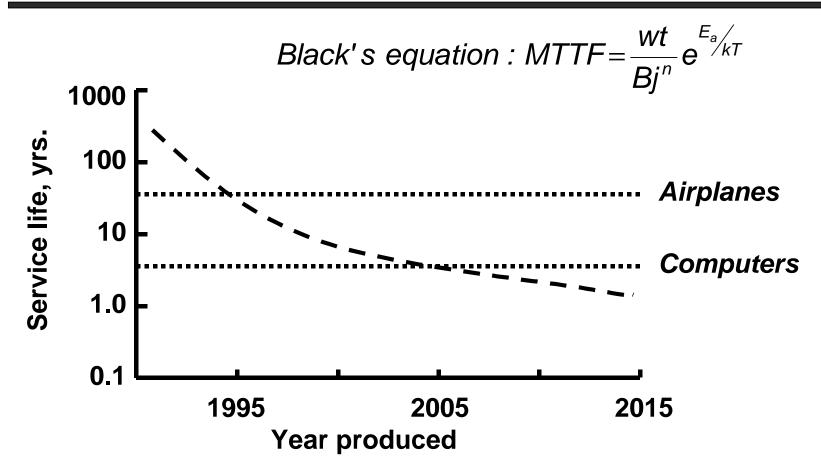
LSI Logic

- Current industry standard life tests are only equivalent to 10-year life
- Rules can permit a customer to design for early wearout

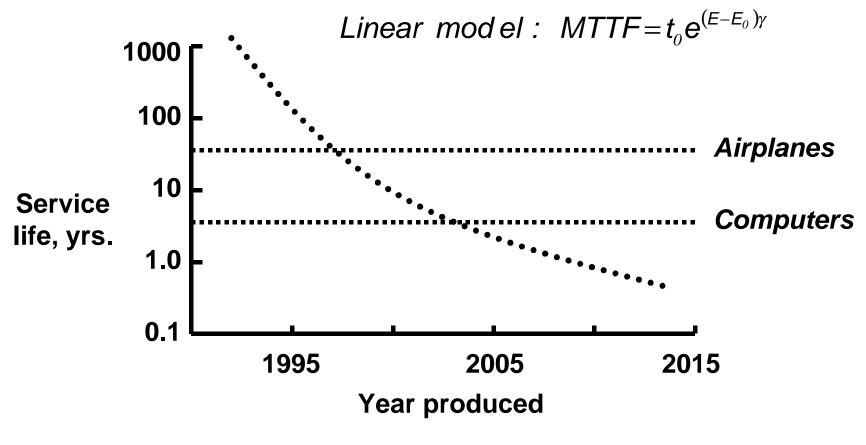
≻ TI

- FIT rates quoted are for 10-year life (80% of customers
- Do not want to design for <10-year life, but will do so on request

Motorola


 Industry is reviewing 3 categories: 3-5 years, 5-7 years, 10+ years

- Package defects: Understood, technical issues can be managed for future parts.
- Silicon defects: Understood, fundamental limitation on chip yield and extrinsic defects.
- Electromigration: Understood, may be less problematic for multiple layers of metal.
- Oxide breakdown: Technical limitations with no known technical solutions


Electromigration

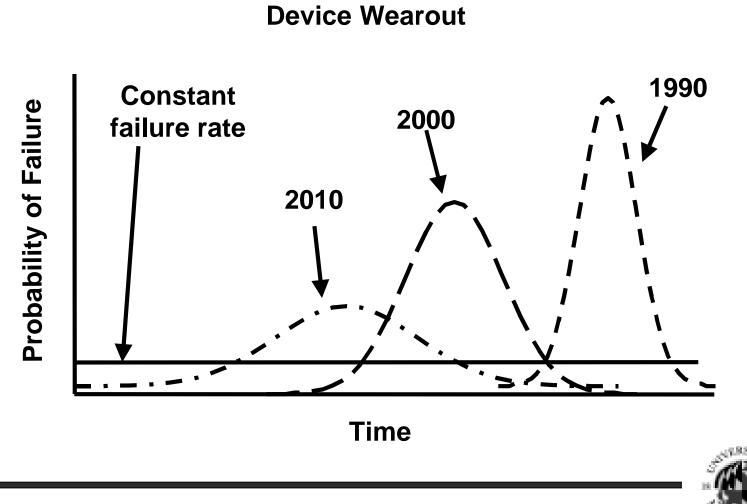
Mitigating factors: multilayer designs, Cu conductors, voltage scaling (probably will not be a show-stopper)

Oxide Breakdown

Mitigating factors: no known technical options

Reliability and Safety Assessment

- Short device service life means that constant failure rate assumption (used in all current aerospace reliability and safety analyses) is no longer true
- Device failures may be considered common cause failures


Determine failure distributions for semiconductor devices

- Will require accelerated testing of devices
- Will require retrospectivly analyzing Field Failure data
- Will be a continuing effort

Use Numerical Simulation Tools to estimate

- System failure rates
- Time to system wearout (most important)
- Reliability assessment will be an ongoing activity for each system.

What Will it Cost?

> Assume

- A commercial jetliner has 300 electronics boxes
- Each box costs \$20,000
- Each box will have to be replaced every 6 years
- Replacement equipment cost is the same as original equipment cost
- ➢ Result
 - The added support cost will be \$1M per airplane per year

AVSI Project Goals

- Conduct a Reliability Assessment of Semiconductor Devices
 - Determine failure distributions for semiconductor devices
 - Understand the effects of early wearout
 - Develop safety and reliability tools, process and guidelines for avionics system design
 - Estimate the Cost Impact on Future Generation Avionic Electronic Systems

UMD Project Organization

> We'll organize the project into 3 phases

- Phase I will examine what is known today about avionics and component reliability
- Phase II will examine component reliability in greater depth and develop screening approaches
- Phase III will focus on understanding/predicting reliability and developing tools and process to design reliability into avionics systems
- The organization is a "living document" and will evolve

Phase 1: Current Knowledge

- Compile models on wear-out mechanisms including electromigration, hot-carrier degradation and oxide breakdown
 - o Summarize results of literature search in a paper
 - o Plan to submit paper to IEEE Transactions on Reliability.
 - No proprietary data will be in the paper.
 - o Deliverable: Likely failure mechanisms of future semiconductor devices in avionics applications

Project Organization

- Get field data from AVSI members
 - o Interested in building a baseline understanding of current avionics reliability and reliability processes
 o Not a critique of current processes
- Work with a "burn-in" house such as Bell Technologies and Amkor
 - o Get test and field data on components
 - Get data on large numbers of a single component
 - Correlate Burn-In data with Field Failure data
 - Develop Screening tools for Reliability (I.e. Chip-Eye Technology methodology)

Phase II: Understanding Failure Mechanisms

- Complete analysis of field and burn-in data o Correlate models with field and test data
- Deliverable: Develop Models to Estimate Lifetimes of Future Avionics
 - o Verify Models
 - o Continue Field Data analysis

Project Organization

Phase III: Design Tools

- Develop methodologies and tools to aid in the design of reliable avionics systems
 - o Component lifetime modeling and selection
 - o System level design techniques
- Deliverables
 - o Device Assessment Methods and Avionics System Design Guidelines
 - o Adequacy of Existing System Reliability and Safety Analysis Methods for Future Avionics Systems

What we need from AVSI members

LRU (Blackbox) Level

- Failure rate
 - Number of failures
 - Operating time
 - Question: Is the operating time for avionics boxes measured in flight hours or actual powered-on time?
- Operating conditions/environment
- Failure modes/mechanisms

What we need from AVSI members

- Component Level
 - Component Failure Rates
 - Component environment
 - Failure modes/mechanisms
- Current processes for:
 - Reliability at the system level
 - Reliability at the component level
 - Component selection
 - Component qualification
 - Regulatory Guidance/Requirements
- We'd like to get as much raw field data as possible on failures

Areas of Wearout Concern

Areas of wearout concern at the IC level

- Electromigration
- Oxide Breakdown
- Hot Carriers
- Packaging and Connections

Electromigration

- The movement of conductor atoms due to the flow of electrons
- Understood phenomenon
 - Can be dealt with through
 - o The proper use of materials
 - Addition of Cu to Al interconnects
 - o Multiple layers of metallization to reduce current densities
- \succ Life time grows as linewidths shrink to $2\mu m$
 - Due to grain structure assuming a 'bamboo' pattern

Hot Carrier Injection (HCI)

- Degradation of gate oxide performance
 - Typically results in reduced circuit speed (rather than hard failure)
- Effects are strongly influenced by voltage
 - Decreased temperatures INCREASES effects
- > Don't know if HCI will be a reliability concern
 - Evidence that the physics change at 0.25 µm and smaller
 - Some avionics systems spend time at LOW temperatures and some at HIGH temperatures.

Time Dependant Dielectric Breakdown (TDDB)—Oxide Breakdown

- Application of electric field across a dielectric material causes breakdown eventually resulting a short circuit failure
- Three step process
 - Defect generation during electrical stress
 - Breakdown trigger
 - Dielectric Breakdown
- This is expected to be an area of concern as device features shrink
 - No known technical solutions

Time Dependant Dielectric Breakdown

Thermo-Chemical or E-Model

- Field driven model
- Trap generation begins with oxygen vacancy

$$t_{50} = e^{E_a/kT}$$

Anode Hole Injection (AHI) or I/E-Model

- Function of stress current density
- Trapping of holes generated in Oxides

$$t_{BD} \cup e^{(B+H)/E}$$

Direction

- Bring together published literature and student research
 - Determine the significance and impact of the different wearout mechanisms
 - Understand and predict the lifetimes of semiconductor devices
 - Develop guidelines for designers of semiconductor devices
 - Develop guidelines for developer of higher level systems
 - Evaluate Economic Impact of Reliability

